/ FAQs / 机器学习需要处理哪些不同类型的数据?

机器学习需要处理哪些不同类型的数据?

机器学习需要处理哪些不同类型的数据?
机器学习处理涉及多种对训练模型至关重要的数据类型,例如结构化数据(有组织的表格)、非结构化数据(如文本、图像)和半结构化数据(如JSON)。这些形式意义重大,因为原始数据必须转换为可用特征;它们支撑着推荐系统和自动驾驶汽车等应用,其中多样化的输入确保了强大的人工智能性能。 主要类别包括用于连续值的数值数据、需要编码的分类数据、用于自然语言处理任务的文本数据、用于视觉识别的图像/视频数据以及用于时间模式的时间序列数据。每种类型都决定了预处理步骤,如标准化或标记化,以处理噪声并提取特征。在实践中,这通过交易分析实现了金融领域的欺诈检测,并通过医学影像诊断推动了医疗保健的进步,提高了效率和准确性。 这些数据类型的应用支持预测建模、决策自动化以及零售个性化等领域的创新。它们的价值在于能够实现可扩展的、数据驱动的解决方案,从而改善运营成果——例如,聊天机器人使用文本处理来增强客户服务,而制造业中的传感器数据优化了预测性维护,提高了生产力并降低了成本。

高效分析,释放数据价值。开启企业数据决策新可能!

免费试用

极速分析,强劲扩展。驱动业务创新,就选StarRocks!

了解 StarRocks

继续阅读

什么是持续监控,为什么它对已部署的机器学习模型很重要?

持续监控是指机器学习模型部署到生产环境后,对其关键指标和行为进行持续、自动化的跟踪。它根据既定基准评估输入、预测和业务结果,以检测数据漂移、概念漂移或性能下降等偏差。其重要性在于主动识别损害模型有效性、公平性或可靠性的问题。这在欺诈检测、信用评分和推荐系统等实际应用中至关重要,因为不断变化的数据模式...

Read Now →

数据转换对提高模型准确性的重要性是什么?

数据转换通过调整格式、尺度或分布,为机器学习准备原始数据。这至关重要,因为现实世界的数据往往杂乱无章、不一致,其原始形式不适合模型使用。归一化、编码和特征工程等技术将数据转换为算法能够有效处理的结构化格式。这种预处理提高了数据质量,使模型能够识别真实模式,改善训练过程中的收敛性,并实现更高的准确性,...

Read Now →

机器学习算法如何延续或加剧决策中的偏见?

机器学习算法可能会通过从反映过去歧视的有偏差历史数据中学习,来延续或放大社会偏见。如果训练数据对某些群体的代表性不足,或者编码了带有偏见的模式,算法就会内化并复制这些偏见。这会在信用评分、招聘、刑事司法和贷款审批等高风险应用中产生不公平的歧视性结果,破坏公平性和信任,同时加剧系统性不平等。 偏见传...

Read Now →